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ABSTRACT 

The finite element (FE) mesh sizing has great influence on computational time, memory usage, and accuracy of FE analysis. 
Based on a systematic in-depth study of the geometric complexity of a set of connected surfaces, a computational procedure for 
the generation of FE mesh sizing function is proposed.  The computational procedure has three main steps: (1) Generation of 
source points that determine the size and gradient at certain points on the surface; (2) generation of an octree lattice for storing 
the sizing function; and (3) interpolation of mesh size on the lattice.  The source points are generated automatically using a set of 
tools that are sufficient to completely measure the geometric complexity of surfaces.  A disconnected skeleton of the input 
surface is generated, and it is then used as one of the tools to measure the proximity between curves and vertices that form the 
boundary of a surface.  Octree lattice is used as it reduces the time for calculating the mesh size at a point during meshing.  The 
size at the octree lattice-nodes is calculated by interpolating the size of the source points.  The computational procedure is 
independent of the meshing algorithm; it can handle non-geometric factors, and it is capable of generating variety of meshes by 
providing the user with enough control of mesh size and gradation.  The proposed approach has been tested on many industrial 
models, and graded surface meshes have been generated successively. 
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1. INTRODUCTION 

This paper examines element sizing of surface meshes used 
in the finite element method (FEM).  The FEM is a 
versatile and powerful numerical procedure which analyzes 
complex structures and continua for various scientific and 
engineering fields.  Surface meshes are used in industry in 
such diverse applications as animation, cinematography, 
medical simulations, manufacturing, and FE analysis.  Each 
area of application has a specialized requirement for 
element quality, sizing, approximation accuracy, and 
computational time of the surface mesh.  For example, in 
the computer graphics community, the emphasis is on 
visual quality, optimizing the number of mesh elements or 
polygons, and speed.   Whereas, in engineering, the 
requirement is for element size, quality, number, and 
orientation.  This paper will focus on automatically 
generating sizing information for FE surface meshing.  
 
Even though much research has been done developing 
automatic, unstructured FE surface meshing algorithms [1], 
these algorithms do not recognize the complexity of 
geometry upfront; therefore it is difficult to generate the 
optimal mesh in one step.  For this reason it is worthwhile 
to split the surface meshing process into two steps: (1) 
Analyze the input surface and generate functions that 
provide size, shape and orientation of the desired elements. 
(2) Generate FE mesh using the size, shape and orientation 
information.  Here the objective is to completely analyze 
the input surface and to provide the mesh sizing function to 
the surface meshing algorithms. 
 
In general, a FE mesh sizing function depends on various 
factors such as, geometric complexity of the domain, 
physics of the problem, boundary conditions etc.  As  

 
geometry of the domain is most influential factor and is 
always available upfront, here we generate mesh sizing 
function for generating an initial geometry-adaptive mesh.   
 
As illustrated in Figure 1, a geometry-adaptive mesh 
depends on the geometric complexity of the surface and 
contains significantly fewer elements, while maintaining 
the mesh quality with fine elements at small features and a 
high curvature region, and by a smooth transition in mesh 
size; in this way, geometry-adaptive mesh reduces 
computation time and memory usage during preliminary 
analysis without sacrificing accuracy.  The accuracy of 
analysis can be improved later by refining and coarsening 
the initial geometry-adaptive mesh, based on error 
estimation from the preliminary analysis.   
 
Thus generation of an appropriate geometry-adaptive mesh 
sizing function is crucial in obtaining accurate preliminary 
FE analysis results; so there is a great demand for 
automatic generation of a geometry-adaptive mesh sizing 
function.   

 
Figure 1 Uniform mesh and geometry-adaptive 
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2. LITERATURE REVIEW 

This section discusses the previous surface meshing 
approaches with more emphasis on sizing.  Many of the 
previous meshing algorithms discuss some sort of 
element/nodal spacing control; however, sizing is 
integrated with the meshing process.   
  
In early meshing schemes, users were required to specify 
the size manually; even today, while meshing the complex 
parts, user input is required in many commercial packages.  
In early advancing front methods (AFM) [2], a background 
mesh consisting of simplicial elements (triangles), was 
manually constructed using sample points (nodes).  The 
size of the background mesh at each node is specified by 
the user, and during meshing, the size at a point in the 2D 
domain is calculated by interpolating the sizes stored at the 
nodes of the triangle containing that point.  In general, 
specifying the size manually is a tedious and time 
consuming process.   
 
The generation of background mesh was later automated by 
generating a Constrained Delaunay Triangulation (CDT) 
[3, 4] of a set of vertices.  Delaunay mesh [5] on curved 
surfaces was later developed by satisfying empty 
circumellipse, rather than an empty circumcircle in 
parametric space. Cunha et al. [6]  automated the placement 
of the background mesh nodes on the curves, followed by 
placement on surfaces, using curvature and proximity.  
Proximity is determined based on the distance between the 
facets and the nodes.  Measuring proximity in this manner 
is a combinatorial problem and is generally time 
consuming.  Also, because the empty Delaunay meshes are 
coarse, abrupt variations can occur in the target mesh size.   
 
Owen and Saigal [7] used a natural-neighbor interpolation 
method to alleviate the abrupt variations in target mesh 
size.  Owen and Saigal [7] generated a CDT in 2D 
parametric space by considering a sparse set of nodes on 
the boundary of the surface.  The size at the boundary 
nodes is calculated based on the edge lengths of the 
boundary segments.  The final sizing function depends on 
node placement in the initial background mesh, and on the 
interpolation method. The natural-neighbor interpolation 
method using CDT, has shown good results in surface 
meshing; however, initial distribution of boundary vertices 
is crucial in obtaining CDT and proper initial size at the 
nodes.   
 
One disadvantage of the background mesh is that, while 
calculating the mesh size at a point, finding the triangle 
containing that point is expensive, and a parallel-
developed, alternative to store mesh size is the background 
grid.  Pirzadeh [8] used the uniform Cartesian grid to store 
the mesh size;  however, a uniform grid is not suitable for 
capturing the large gradient in mesh size and it consumes 
huge amounts of memory.  The other class of background 
grids which overcome uniformed grid limitations are non-
uniform hierarchical grids called Quadtree.  
 
The Quadtree, a spatial decomposition method, was 
pioneered for meshing in 1980s by Yerry and Shepard [9] 

and surveyed by Tracker[10] and Shepard[11].    The size 
of the quadtree cells (squares), depends on the subdivision 
of the bounding box, which is governed by the user- 
supplied spacing function or a balance condition for the 
tree.  The drawback of this approach is that Quadtree is 
orientation sensitive and it is difficult to control the sizing 
gradient.   
 
Another class of meshing approach uses medial axis 
transform (MAT)[12], for geometry-adaptive meshing.  
Srinivasan et al. [13] used the radius function of MAT to 
control nodal spacing on the boundary and interior of a 2D 
domain while generating adaptive triangular mesh.  Gursoy 
and Patrikalakis [14, 15], used MAT to detect constrictions, 
extract holes, and to generate adaptive triangular meshes.  
The author has used medial axis to generate adaptive 
quadrilateral meshes on surfaces by varying the width of 
the tracks using radius function [16].  Even though MAT 
has been used in mesh generation, no specific research has 
been done in generating the mesh sizing function.       
 
Although the approaches discussed above are effective and 
useful in many aspects, no serious attempt has been made 
to systematically understand the geometric complexity of 
the surface with reference to FE mesh sizing, and no 
general framework specifically for sizing function 
generation is proposed; these two issues are addressed in 
this paper. Sections 4 and 5 discuss understanding and 
measuring geometric complexity of surfaces in reference to 
FE meshing.  Skeleton is proposed as one of the tools to 
accurately measure proximity and feature size.  The 
Skeleton avoids finding distances between combinations of 
geometric entities.  In Section 6, an overview of the 
computational procedure for sizing is given.  The details of 
the general framework are given in Sections 7, 8, and 9.  
The proposed framework is independent of the meshing 
algorithm, general enough to handle non-geometric factors, 
and capable of generating variety of meshes. It is also 
computationally efficient, robust, and easy to implement.    

3. PROBLEM STATEMENT 

The goal of our work is to develop a computational 
procedure for mesh sizing function by completely 
measuring the geometric complexity of surfaces.  The mesh 
sizing function must meet certain requirements: (1) Mesh 
size should be bounded with in a minimum size (dmin) and a 
maximum size (dmax). (2) The gradients should be bounded 
by a predefined limit (α).  A more formal statement is 
given below.  
 
Given a set of connected surfaces F in R3and the bounds of 
mesh size dmin and dmax, Generate the mesh sizing function 
s, based on the geometric complexity of F, such that, 

1. Mesh size d = s (p) where point p(x,y,z) lies on F 

and dmin ≤  d ≤ dmax 

2. s  is α-Lipschitz, i.e., for any two points p1 , p2  

lying on  F 



 

     | s(p1) – s( p2) | ≤ α || p1 -  p2  || where α is a 
constant   

4. GEOMETRIC COMPLEXITY OF 
SURFACES 

As it is difficult to analyze the geometric complexity of the 
set of connected surfaces, F, at once, first the set F 
embedded in 3ℜ is decomposed into disjoint subsets; then 
the geometric complexity of each subset is analyzed 
considering the FE mesh generation.  The surfaces are 
decomposed into disjoint subsets for the purpose of 
theoretical analysis only. 

4.1. Disjoint Subsets of a Set of Connected 
Surfaces 

Let set F contains L connected surfaces Fi, where i = 1, 2, 
L, which meet only at the boundary curves (without 
intersections), and each surface Fi, has a interior and a 
boundary as given in Equation 1. 
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 Equation 1 can be rewritten as  
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Let the set F contain M curves Cj, where j = 1, 2… M.     
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Substituting Equation (3) in Equation (2)  
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The union of boundary of M curves is same as set of N 
vertices of F, and so Equation 4 can be written as Equation 
5.  
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Equation (5) shows that the disjoint subsets of a set of 
connected surfaces are: The interior of each surface, the 
interior of each curve and vertices.  In Figure 2, the root of 
the tree is the set of input surfaces (a single surface is 
shown for clarity), and the leaf nodes are the disjoint 
subsets.  As the subsets are disjoint, the geometric 
complexity of each subset is independent of the other.   

 
Figure 2 Disjoint subsets of a surface 

4.2. Geometric Complexity of each Disjoint 
Subset 

 The disjoint subsets of F, which are embedded in 3ℜ , are 
defined first in order to understand their geometric 
complexity.  A vertex V is a point in 3ℜ , which is defined 
by its Cartesian coordinates Vx, Vy, and Vz.  The in(C) is a 
curve in 3ℜ is a continuous mapping 3: ℜ→Iα where I is 
interval (a, b) on real line ℜ .  To simplify the analysis, we 
assume in(C) is curvature continuous.  A general 
parametric surface in(F) can be defined by a vector-valued 
mapping x from 2D parametric space D to a set of 3D 
coordinates. 
  FD →:x  where D is a open subset of 2ℜ .   
 T)),(),,(),,((),( vuzvuyvuxvu =x  
The mapping x is called parameterization of the surface in 
(F).  If for every point q = x(u0, v0), there exists a 
neighborhood Mq, q ∈Mq ⊂ 3ℜ  and Nq, (u0, v0)T ∈ Nq ⊂ 

2ℜ such that x: Nq → Mq ∩ F  is a differentiable 
homeomorphism on  Nq, and the differential dxp: 

2ℜ → 3ℜ is one-to-one for every point p ∈ Nq, the surface 
in(F) itself is called “a regular parametric surface”.  To 
simplify the analysis, it is assumed that the surface F is 
curvature continuous, i.e., F can be parameterized locally 
by a mapping T)),(),,(),,((),( vuzvuyvuxvu =x , which is a 
twice continuously-differentiable function.  At the end of 
this section, a note on relaxing this assumption is given. 
 
The geometric complexity of each disjoint subset defined 
above is analyzed in reference to FE meshing in the 
following paragraphs.  A vertex V is a zero dimensional 
entity whose interior is same as the boundary; it is not 
necessary to understand its geometric complexity.  To 
represent a vertex V in the FE mesh, an FE node must be 
placed. 
 
The geometric complexity of the interior of a curve, in(C) 
(the only subset that is an 1D geometric entity), is 
discussed here.  Figure 3(a) shows the invalid linear FE that 
is longer than the curve.  This shows that the proximity 
between the end vertices of a curve should be taken into 
account.  As in(C), a 1D subset, is embedded in 3D space, 
in(C) shown in Figure 3(a) can be bent to lie on a plane, as 
shown in Figure 3(b).  From Figure 3(b) it is clear that 
curviness should be taken into account while generating the 
linear elements, in order to better represent in(C); that is, 
the smaller elements should be placed at the region of high 
curviness.  Again, as in(C) is 1D subset, it has one more 
freedom to come out of the plane.  Figure 3(c) shows the 
helix with a non-zero twist, but with the same length and 
curviness as that of the curve lying on the plane (twist=0).  
An element paved on these two curves shown in Figure 
3(c) will have different deviation from the original curve.  
 
The geometric complexity of the interior of a surface, 
in(F), which is the only subset that is a 2D geometric 
entity, is discussed here.  Figure 4(a) shows the invalid 
triangular elements that lie outside the in(F).  This shows 
that the proximity between the boundary curves and 
vertices should be taken into account.  As in(F) is 

M,..2,1),( =jCin j

L,..2,1),( =iFin i  

Surfaces, F 

∪ L

1
)(=

=

i

i iFbnd  

N,...2,1, =kVk



 

embedded in 3D space, it is able to bend to form a curved 
geometric entity.  Figure 4(b) shows the invalid triangular 
elements which do not represent the original curved 
geometry well.  Thus, at the interior of a surface, the 
curviness should also be taken into account while 
generating the FE meshes. 
 
At the beginning it was assumed that curves and surfaces 
were curvature continuous, but there could exist cusps 
(such as the tip of cone) and sharp bends in the curves and 
surfaces where tangent and curvature vector are not well 
defined.  These points, curves, and regions are considered 
to be hard points, curves, and regions.  The complexity of 
hard points, curves, and regions can be analyzed, as 
discussed in analyzing vertices, interior of curves, and 
interior of surfaces.  And, during meshing, FE nodes should 
be placed appropriately to better represent these hard 
entities.  These hard entities are not addressed in the rest of 
the paper.   
 
Also, the relative position of surfaces in F, for example, the 
angle between adjacent surfaces etc., are not considered 
here, as they do not affect surface meshing.  In some 
applications, due to the physics involved, the relative 
position could play a prominent role, but is not considered 
here as it is outside the scope of this paper. 

 
Figure 3 Geometric complexity of curve interior 

 
Figure 4 Geometric complexity of surface interior  

5. TOOLS FOR MEASURING GEOMETRIC 
COMPLEXITY OF EACH SUBSET 

In the following paragraphs, the tools needed to measure 
the geometric complexity of each subset of F are discussed 
in detail.  A disconnected skeleton is proposed as the tool to 
measure the proximity in in(F), and principal normal 
curvatures are used as the tool to measure the curviness of 
in(F).  In in(C), arc length, principal normal curvatures, and 
torsion are used as the tools to measure proximity, 
curviness, and twist.  

5.1. Measuring Proximity in in(F) 
Here, a computationally-efficient, sufficiently accurate 
disconnected skeleton that provides local thickness 
information as the tool to measure the proximity in in(F) is 
proposed.  Measuring proximity between the boundary 
entities of F is a global problem and the previous method 
employed, i.e., finding distance between all combinations 
of geometric entities that form the boundary, is expensive 
and less accurate.  Therefore here the skeleton is generated 
using concepts of medial axis transform (MAT) and 
chordal axis transform (CAT).   
  
The MAT is initially defined by Blum [12] for a planar 
domain as the locus of the center of the maximal ball as it 
rolls inside an object--along with the associated radius 
function (see Figure 5(a)).  In other words, a point q ∈ F is 
contained in medial, MA(F), if and only if there exists a 
closed disc K(q, r(q)) with center q and radius r(q), which 
is not contained in a larger disc W with  K(q, r(q)) ⊂ W ⊂  
F.  The radius function r(q) provides the local thickness and 
is a accurate measure of proximity in in(F).   Blum also 
gave a grassfire analogy to MA, i.e., MA exists at the 
interior where the grassfire propagated from the boundary 
meet.  Later, Wolter [17] defined the MAT of a closed n-
dimensional topological manifold, F, bordered by a 
topological n-1-dimensional manifold, bnd(F), as the subset 
of the cut locus Cbnd(F) , which is contained in F, i.e., MA(F) 
= C bnd(F) ∩ F.  The cut locus Cbnd(F) of a closed set bnd(F) 
in the Euclidean space is defined as the closure of the set 
containing all points, which have at least two shortest paths 
to bnd(F).  Wolter et al. [18, 19] extended the MAT on 
curved surfaces by finding the shortest path on the surface 
using geodesics distance instead of Euclidean distance.  
The minimal geodesic distance between two points q1 and 
q2, is the minimal length of all curves in F that join q1 and 
q2.   
 
Even though the MAT is mathematically well-developed 
[20] and is an accurate tool for measuring proximity, it is 
computationally expensive to generate the continuous 
MAT.  As MAT is defined over only continuous domains, 
it is generally expensive.  Also, on curved surface, finding 
geodesic is expensive as it requires solving a system of 
differential equations [21].   
 
Prasad defined a new type of skeleton for both continuous 
and discrete domain, called chordal axis transform 
(CAT)[22].  The CAT of a non-degenerate planar shape is 
defined as set of ordered pairs (p,δ ), where p and δ are 
either the midpoint and half the length, respectively, of a 
maximal chord of tangency, or the center and radius, 
respectively, of a maximal disc with three maximal chords 
of tangency, that form an acute angled triangle.  Figure 5(b) 
shows the chordal axis (CA), points of a discrete planar 
domain that can be generated with less computational cost.   
Note that CAT is defined only on planar surface and no 
effort has yet been made to define it on curved surfaces. 
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Figure 5 Medial and Chordal axis 

5.2. Skeleton Generation 
As FE mesh is a discretization of a continuous domain, in 
this paper, a set of sufficiently-accurate disconnected 
skeleton points are generated using the concepts of MAT 
and CAT, with less computational cost.  Figure 6(a) 
illustrates a general surface F in 3ℜ .  First a discrete 
representation of parametric surface F , is obtained by 
extracting graphics facets, T. Note that graphics facets are 
generated based on the curvature of the surface and may 
contain poor quality triangles, as maintaining the 
cardinality of T minimum is one of the objectives.  A set of 
triangles T, is split into planar (Tpln), and curved (Tcrv) 
subsets, as illustrated in Figure 6(b).  Subset Tpln contains 
triangles whose vertices lie only on bnd(F), and the angle 
between the normals of the adjacent facets ti, tj ∈ Tpln , 
should be within a predefined limit θpln.  The subset Tcrv 
=T\Tpln, represents high curvature regions containing many 
vertices in in(F). As CAT is defined on the planar domain, 
disconnected skeleton points are generated using CAT in 
Tpln.  And in Tcrv , grassfire is propagated from the 
boundary to obtain disconnected skeleton points, using the 
concept of MAT.   The details of obtaining these skeleton 
points in Tpln and Tcrv , are explained in the following 
paragraphs. 
 

 
Figure 6 Disconnected skeleton 

Here the disconnected skeleton generated in Tpln , using the 
CAT, is explained. Tpln of a surface contains fewer facets 
and does not guarantee quality (see Figure 7(a)).  To 
increase the number of triangles, the triangles are 
subdivided by adding Steiner points only on the boundary, 
as shown in Figure 7(b).  The addition of Steiner points 
depends on the number of boundary edges and the internal 

angle of the subdivided triangles.  As Delaunay mesh is 
needed for the generation of CA, triangulation shown in 
Figure 7(b) is converted into Delaunay mesh, as seen in 
Figure 7(c).  Delaunay mesh is generated by removing the 
illegal internal edges iteratively, using edge swaps[23].  CA 
points exist at the midpoint of the internal edges and at the 
circum-center of the acute angle triangles, which have three 
internal edges.  Centroid is used instead of circum-center to 
reduce the computational cost.  The radius of CA points is 
calculated using half the length of internal edges and 
average distance from centroid to three vertices of acute 
angle triangle.  For the purpose of mesh sizing, only a 
subset of skeleton points is considered.  As the radius of 
skeleton points formed by adjacent curves approaches zero 
(see Figure 5(a) and Figure 7(c)) at convex vertices, these 
points will generate a fine mesh and hence the skeleton is 
trimmed.  If the angle between the curve normal measured 
at the end vertices of the internal edge connecting the 
adjacent curves, is less than a threshold value, then the 
skeleton point at the mid-point of the internal edge is not 
generated.  The size at these regions is determined by other 
tools discussed in the rest of this section and interpolation 
technique, which is detailed in Section 9. 
 

 
Figure 7 Skeleton generated in Tpln 

The disconnected skeleton generated in Tcrv by propagating 
grassfire from the boundary curves is explained here, which 
is similar to 3D discrete skeleton generation[24].  Figure 8 
(a) shows the initial graph Tcrv, lying on a curved surface F.  
To improve the accuracy of skeleton, additional graph 
edges and vertices (see Figure 8(b)) are added to Tcrv to 
form a dense graph T’crv, as shown in Figure 8(c) and 
Figure 17(b).  These additional edges are obtained by 
joining the centroid of the facets with the three midpoints 
of its edges.  The accuracy of the skeleton can be improved 
by using multiple refinements, at the expense of time.  The 
grassfire propagation on graph T’crv has three main steps: 
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(1) The initiation phase, (2) propagation phase, and (3) 
termination phase (see Algorithm 1), which are detailed 
below.  
 
In the initiation phase, the vertices of T’crv lying on the 
boundary curves of F are inserted into a priority queue, H, 
to form the initial front for grassfire propagation.  The 
distance, d, traveled by the wave at the vertices of the 
initial front is set to 0.0 and the curve ID is stored.  The 
inward direction of the wave, w, at each vertex of the initial 
front is given by n x t, where n is surface normal and t is 
curve tangent.  The wave direction, w, lies on the tangent 
plane of the surface and is orthogonal to t.  In the 
propagation phase, the initial front is incrementally moved 
inwards by popping the top vertex, vtop, from H and 
pushing valid adjacent vertices of vtop into H.  At the top 
vertex vtop, the distance d traveled by the wave is least.  The 
valid adjacent vertices of vtop are the ones, which are not 
yet visited by the wave and whose insertion into the current 
front (H) will move the front inward.  As the grassfire 
propagates, curve ID, distance, and direction of the wave at 
the newly-inserted adjacent vertices vadj are calculated 
using vtop (performed in Function VisitNode in Algorithm 
1).  The distance dadj at vadj is given by dadj = dtop + dist 
(vtop, vadj).  As the wave touches vadj from different 
direction, the dadj is updated by retaining the minimum 
value.  Thus every node will have minimum distance from 
the boundary.  The wave direction at the vadj is calculated 
by taking the projection of wave direction at vtop on the 
tangent plane at vadj.  In the termination phase, skeleton 
points are generated at the region where the opposing fronts 
meet.  As previously mentioned, the curve ID and the 
direction of the wave at the opposing fronts are used to trim 
the skeleton to avoid unnecessary fine mesh at convex 
corners.  The position, distance and direction of the wave 
stored at the vtop, and its opposing adjacent vertex, is used 
to determine the position and radius of skeleton points.  
The grassfire propagation ends when the number of vertices 
in the current front H goes to zero. 
    
Algorithm 1:  Grassfire propagation on T’crv 
Input: T’crv 
Output: Disconnected skeleton points 
Begin 
    Insert boundary vertices of T’crv into a priority queue H.   

    While (|H| ≠ 0)  

        vtop ← H.Pop() 

        VisitNode (vtop, H)  

End 

Note that an approximate intrinsic distance, i.e., distance 
measured on the surface, is used, rather than Euclidean 
distance, in determining the radius of the skeleton points in 
both Tpln and Tcrv.  Also, since many of the meshing 
algorithms use the advancing front method (AFM)[1], the 
radius function of the skeleton is naturally an accurate 
estimation of proximity.  Thus, computationally efficient, 
sufficiently accurate skeleton points are generated to 
measure the proximity in in(F) for the purpose of mesh 
sizing.  

 

Figure 8 Skeleton generated in T’crv 

5.3. Measuring Curviness in in(F) 
Unlike proximity, measuring curviness is a local problem.  
Let us consider a point q = x(u0, v0), on surface F and let 
α(t) be a curve passing through q (see Figure 9(a)).  α’(t) 
denotes the tangent vector of the curve α at t.  The tangent 
plane of F at q is the set of tangent vectors of all curves 
passing through q and is given by  
 

Tq(F) = { v | v is tangent to F at q}.   
 
The curviness of F at q can be measured by measuring the 
curvature of curve α(t) at q.  Without any loss of 
generality,   let q = α(t0), w ∈ Tq(F) be equal to α’(t0), and 
N be the normal to Tq(F) at q.  The curvature vector k of α 
at q is given by Equation 6. 

 k = kn + kg = kn N + kg G    (6) 

where G is the unit vector along (N x w) ∈ Tq(F), as shown 
in Figure 9.  kn is called “the normal curvature vector”, 
which is given by Equation 7; and kg is known as “the 
geodesic curvature vector”. Their signed lengths, kn, kg are 
called normal curvature and geodesic curvature in direction 
of α’(t0) respectively.  Note that the signs of kn and kg 
depend on the orientation of the surface given by the 
normal vector, N.   
 
For mesh sizing purposes, we are interested in the deviation 
in the direction of the normal while measuring the amount 
of curviness, which is clear from Figure 4(b).  kn is a 
measure of change in α’(t0) in the normal plane, whereas kg 
is a measure of change in  α’(t0) in the tangent plane.    As 
the normal curvature kn varies with the direction of α’(t0), 
there exist extreme values kmin and kmax (not necessarily 
distinct values) [25], called “minimum and maximum 
principal curvatures”, along α’min(t0) and α’max(t0),  
respectively.  Their product K :=  kmin . kmax is called “the 
Gaussian curvature” and their mean H := (kmin + kmax) / 2.0 
is called “ the mean curvature”. 

 

 
(d) Disconnected skeleton (c) Dense graph T’crv 

(a) Graphics facets Tcrv (b) Additional graph 
vertices and edges



 

 
Figure 9 Curvature and mesh size at a point 
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For the purpose of mesh sizing, it is necessary to evaluate 
the curvature at just a few sample points where the surface 
bends, at less computational cost.  Mclvor et al. [26] 
compared eight different methods of estimating surface 
curvature. The facet-based method proves efficient for 
calculating a relatively accurate curvature estimate with 
less computational time.  Sample points are placed where 
the direction of the facet’s normal change in order to 
capture surface curvature (see Figure 10).  As internal facet 
vertices exist to capture the curvature, sample points are 
placed on every internal facet vertices, as shown on the left 
in Figure 10.  If the adjacent facets of an internal edge are 
not coplanar, then sample points are placed at midpoint of 
the internal edge and at centroid of adjacent facets, as 
shown on the right in Figure 10. 

 
Figure 10 Sample points on graphics facets 

5.4. Measuring Proximity in in(C) 
On a curve, the midpoint acts as a skeleton point, and half 
the length of the curve is used to measure proximity 
between the end points.  The length of curve α(t) between 
the end vertices α(a) and α(b) is given by Equation 8.   

∫=
b

a

dttL )()( 'αα      (8) 

As before, in order to reduce the computational cost, the 
length is calculated by adding the length of facet edges 
connecting the two end points of the curve α(t). 

5.5. Measuring Curviness in in(C) 

For a curve α(t) whose tangent vector is given by α’(t), 
curvature vector k is given by Equation 9.   Curvature k 
measures the variation in the direction of the tangent 
vector.   Sample points are placed on the curve at the facet 
vertices only if the adjacent facet edges are not collinear.  
The approximate curvature can be estimated by using the 
normal of adjacent edges to reduce the computational cost.  

3'

'''

α

αα ×
=k         (9)  

5.6. Measuring Twist in in(C) 

Torsion is used to measure the twist of the curve α(t) and is 
given in Equation 10.  
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6. COMPUTATIONAL PROCEDURE FOR 
GENERATING FE MESH SIZING 

The computational procedure for generating the mesh 
sizing function has three main steps: (1) generation of 
source points, (2) generation of a lattice for storing the 
sizing function, and (3) interpolation of mesh size on the 
lattice using source points.  These three steps are discussed 
in the following paragraphs.  The input is a set of connected 
surfaces.  The boundary of the industrial mechanical parts 
is one example of the input (see Figure 16 and Figure 17).  
Here, the input surface to be represented is considered in B-
rep format (such as the ACIS sat file), as it is supported by 
many commercial geometric modelers.   
 
Although only geometric factors are considered in 
generating the sizing function here, the computational 
procedure proposed is sufficiently flexible to consider non-
geometric factors, such as physics, boundary condition etc.  
The tools used to measure the geometric complexity of the 
input surface introduce different types of source points on 
the surface (see Figure 16(b) to Figure 16(d), more details 
in Section 7). 
 
To store the mesh sizing function, a specific type of 
hierarchical background grid called PR-Octree (PR:Point 
Region) [27], is proposed (detailed in Section 8).  In the 
literature, 2D background mesh [7] and 2D background 
grid [11] in parametric space were used to store mesh size.  
This approach depends significantly on the 
parameterization used.  It is also expensive to find the 
triangle containing the point, where mesh size must be 
evaluated. Therefore a hierarchical background grid is 
generated here in 3D space, avoiding problems related to 
parameterization and reducing the meshing time. 
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The next step is to interpolate the sizing function over the 
PR-Octree lattice using the source points.  A good 
interpolation scheme should provide flexibility in 
controlling mesh size and gradation [28, 29]; and it should 
generate smooth sizing function by satisfying α-Lipschitz 
condition. A good interpolation scheme should be 
computationally efficient, and thus able to generate variety 
of meshes as per user requirements.    The details of the 
proposed interpolation scheme, which meet the above 
requirements, are explained in Section 9. 
 
This computational procedure is independent of the 
meshing algorithm used and during mesh generation, the 
target mesh size at a point is interpolated using the size 
stored at the lattice-nodes of the octree cell containing that 
point. 

7. GENERATION OF SOURCE POINTS 

“The source point” is an abstract term which represents size 
and gradient at a location due to any of the factors, such as 
geometric, physics, loading, user defined, etc.  Figure 11 
shows a source point that is defined by: size, s; center, 
c[x,y,z]; scope, scp; and local sizing function , f.  The size 
at the center c is denoted by s, and the sizing gradient 
around the center, inside the scope scp, is controlled by the 
local-sizing function f.  By controlling the size, scope, and 
local sizing function, a variety of meshes can be generated 
to meet the user requirement. 

 
Figure 11 General and skeleton-based source 

points 

Here, source points are generated using the tools (see 
Section 5) that measure geometric complexity of a surface. 
The disconnected skeleton is used to generate the skeleton-
based source points.  The size, center, scope, and local 
sizing function f , of the skeleton-based source points are 
determined as given in Figure 11.  A linear local sizing 
function has been used. The end_factor controls the size at 
the periphery of the source points.  By default, end_factor 
is set to 0.1, thus the size decreases with the distance away 
from the center.  This will generate slightly smaller 
elements at the boundary; the intention being that FE mesh 
will better represent the geometric model at the boundary.   
 
The surface-curvature-based source points are generated 
only at the sample points where the curvature is estimated 
(see Section 5.3).  At a sample point q , the element size ‘h’ 
is calculated as given in Equation 11 [30], (see Figure 
9(b)), where θ is the maximum spanning angle and 
minimum radius of curvature (Rmin = 1/ kmax) as seen in 

Figure 9(b).  For a constant curvature, the deviation of the 
linear FE from the surface will be Rmin - Rmin . cos(θ/2).  
Mesh size h, shown in Figure 9(b), is a conservative 
estimate, as kmax is used in estimating the radius of 
curvature.  Instead of kmax, mean curvature H can be used, 
which will result in coarser mesh size.  Researchers have 
also used the combination of G and H [31].  The scope of 
the source points can be used to control the influence of 
curvature.  
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The size of the curve-length-based source points is 
determined using half the length of the curve; the points are 
placed along the length of the curve at equal intervals.  Like 
surface-curvature-based source points, curve-curvature-
based source points are added on the curves at the facet 
vertices only if the adjacent facet edges are not collinear.   
 
Note that, size of all the above mentioned source points are 
truncated to dmin and dmax, if the size is outside the user 
specified limits dmin and dmax (see Section 3). 

8. PR-OCTREE LATTICE GENERATION 

PR-Octree is selected over other types of octree [27] for 
storing, because it provides a suitable lattice for storing the  
mesh sizing function. PR-Octree [27, 29] is one of the 
hierarchical data structures used for special decomposition 
which represents a set of input points.  By definition, the 
PR-Octree contains cells (cubes) which are either empty, or 
which contain only one point.   The shape of the PR-Octree 
is independent of the order in which the input points are 
inserted.  One disadvantage of the PR-Octree is that 
maximum depth depends on the minimum distance 
between any two points; therefore maximum depth 
(max_depth) of the PR-Octree is fixed here and is taken as 
a user input.   The max_depth can be increased if input 
models contain fine features and high curvature regions. 

In Figure 12 PR-Octree generation is explained using a 
quadtree for clarity.  The vertices and centroid of the 
graphics facets of the input surfaces are given as the input 
points.  The graphics facets capture the surface and curve, 
curvature and small features.  Small-sized facets exist at the 
high curvature region and at fine features (see Figure 16(a) 
and Figure 17(a)).  Therefore the density of facet points 
will be higher at high curvature regions and at small 
features (see left-side image in Figure 12); thus small-sized 
octree cells are generated in these regions (see right side 
quadtree in Figure 12 and octree in Figure 16(e)).   

Even though the PR-Octree captures fine features and 
surface curvature, it is not directly suitable for storing 
sizing function, because of the presence of larger cells in 
the interior (see left-side quadtree in Figure 12).  The cells 
are further subdivided until only 1-level of depth difference 
is maintained between the adjacent cells; this ensures 
smooth transition in cell dimension (see the right-side 
quadtree in Figure 12).  The octree lattice can be further 
subdivided, based on the source points, to adapt the lattice 
based on mesh sizing. Thus a suitable lattice for storing 
sizing function is generated.   

General source point  Skeleton-based source point 

s    = Radius of skeleton point  
c    = Position of skeleton point 
scp = Radius of skeleton point 

( )r
(r) -  _f s s end factor

scp
= × ×  

 



 

 

Figure 12 Original and Subdivided PR-Quadtree 

9. INTERPOLATION USING SOURCE 
POINTS 

In this section, the details of interpolating mesh size on the 
PR-Octree using the source points are described.  The 
lattice-nodes of the octree cells that intersect with the 
graphics facets are marked as bnd-lattice-nodes.  To limit 
the influence of a source point inside its scope, each source 
point is linked with the bnd-lattice-nodes that fall inside the 
scope of the source point.  At first, the mesh size due to 
each type of source point is individually calculated at each 
bnd-lattice-node, by not merging with other source points, 
in order to preserve the characteristics, and to provide 
weights to each type source points.  Later, the combined 
size at each bnd-lattice-node is calculated by taking the 
minimum of all the individual sizing functions, as shown in 
Figure 14.  To ensure smooth gradient, i.e., to satisfy the α-
Lipschitz condition, smoothing techniques are applied using 
digital filters. The following paragraphs explain this 
process in detail. 
 
Size at a bnd-lattice-node ‘n’, is interpolated by a particular 
type of source points, rather than by considering all types 
of source points at once.  The size at n is interpolated by 
taking the weighted sum of the sizes determined by the 
local sizing function f of m source points of type k, linked 
to that lattice-node, as given in Equation 12 (see Figure 13).  
The weight at every source point is calculated by averaging 
the normalized weights, determined by the inverse square 
distance and inverse square size.  This ensures that a source 
point which is nearer and has smaller size, has greater 
influence at a lattice-node 
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and di  is the distance between the center of ith source point 
of type k and the lattice-node (n).  k could be any type of 

source point discussed in Section 7. And fi(di) is the size 
determined by the local sizing function of the ith source 
point. 
 
The final size ‘s’ at each bnd-lattice-node is calculated as 
given in Equation 13, where ‘i’ represents different types of 
source points.  w are the weights, and all weights are 
initially set to 1.0.   Figure 14 shows the graphic view of 
Equation 13. 

{ }{ }{ }minmax ,,aleoverall_scminminmax ddwss ii ⋅⋅=  
     
(13) 
 

Note that individual sizing functions may not cover all the 
bnd-lattice-nodes, as some of these bnd-lattice-nodes may 
not be linked with any of the source points.  The sizes at 
these bnd-lattice-nodes are calculated by averaging the 
non-zero size of adjacent bnd-lattice-nodes.   

 
Figure 13 Interpolation at a lattice-node 

 
Figure 14 Minimum of all sizing functions 

Smoothing techniques are used to alleviate the abrupt 
gradients caused by taking the minimum of all the 
individual sizing functions (see Figure 14).  In the meshing 
literature, various smoothing techniques have been used as 
post-meshing techniques to smooth the FE meshes.  Here 
smoothing is done before the meshing process, and thus a 
vector (position vector of the mesh nodes), is replaced by a 
scalar (mesh size).  The concepts of digital filters, used in 
the image processing and pattern recognition in removing 
the noise, smoothing, and extraction of features, is used 
here in smoothing the mesh sizing function stored on the 
octree lattice.  First the median filter is used to remove the 
outliers, then mean filters are used iteratively to smooth the 
gradients.  By default, the number of iterations of mean 
filtering is set to two.  While smoothing using mean filter, 
an additional constraint is used: if the average of the non-
zero sizes of the adjacent lattice-nodes of a lattice-node n is 
more than the size at n, then the size at n is not altered, in 
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order to respect the smaller size. This process is repeated 
iteratively until α-Lipschitz criterion is satisfied. 
  
To find size at a point p on the surface F, during mesh 
generation,  octree is first traversed from the root until the 
cell cp , containing p, is found; then tri-linear interpolation 
is used to calculate the target mesh size at p, using lattice-
nodes of cp.  Therefore the target mesh size is calculated in 
O(max_depth).  

10. RESULTS AND DISCUSSION 

The proposed approach has been implemented in C++ in 
CUBIT, the mesh-generator software of Sandia National 
Laboratories.  The algorithm has been tested on many 
industrial models and results obtained on a few of these are 
shown in Figure 15 to Figure 17 (model courtesy of Ansys, 
Inc).  The mesh sizing command takes the arguments, 
min_depth (int=4), max_depth (int=7), overall_scale (0.0 to 
1.0 = 0.75), and interpolation_scheme (0 to 5=2).  The 
numbers inside the parenthesis show the default values.    
From Table 1 is clear that total time of mesh sizing 
function generation (excluding meshing time) in Part 2 and 
Part 3--which contain 2154 and 3972 tris respectively-- is 
reasonable. The timings are measured in hp pavilion 
ze5155 notebook. 
 
The disconnected skeleton generated using the proposed 
approach is computationally less expensive and accurate 
enough for mesh sizing purposes.  Figure 16(b) and Figure 
17(c) show the disconnected skeleton of Part 2 and Part 3.  
Table 2 shows that the skeleton is generated in a reasonable 
time of around 3 sec in both Part 2 and Part 3.   
 
The overall_scale is used to control the coarseness level of 
the mesh.  The overall_scale takes the value between 0.1 to 
1.0; and overall_scale = 0.1 generates the finest mesh and 
overall_scale = 1.0 generates the coarsest mesh.  Figure 15 
shows the meshes generated with different values of 
overall_scale, but with the same bound values dmax and dmin. 
  
By default, the interpolation_scheme is given by Equation 
12 and by controlling the weights (see Equation 13), 
various types of meshes can be generated.  A higher weight 
will increase the corresponding sizing function (see Figure 
14).  Figure 17 shows the meshes generated by changing 
the weight of curvature-based-source points. 
 

Table 1 Computational time (sec) for generating 
mesh sizing function  

 

Table 2 Computational time for source point 
generation 

 

11. CONCLUSION 

In this paper, a computational procedure for FE mesh sizing 
function generation is proposed by systematically analyzing 
the geometric complexity of a set of surfaces.  The tools 
that are sufficient to completely measure the complexity of 
surfaces are identified, and a reasonably accurate 
disconnected skeleton is generated using a new 
computationally-efficient algorithm for measuring 
proximity.  The computational procedure uses PR-Octree 
lattice because it reduces the computational cost during 
meshing and the interpolation scheme is capable of 
generating a variety of meshes by controlling mesh size and 
gradation.      
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(a) overall_scale = 0.5, number of tris = 48,354 (b) overall_scale = 0.9, number of tris = 12,940 

Figure 15 Effect of overall_scale on mesh size in Part 1 



 

   
(a) Graphics facets (b) Trimmed disconnected skeleton  (c) Surface curvature  

   
(d) Curve curvature and length (e) Interpolation on PR-octree lattice (f) Geometry-adaptive mesh (2,154 tris) 

Figure 16 Stages of mesh sizing function generation in Part 2 

   
(a) Graphics facets (b) Subdivided facets (dense graph) (c) Trimmed disconnected skeleton 

   
(d) curvature weight = 2.0  (e) curvature weight = 1.0  (f) curvature weight = 0.5 

Figure 17 Effect of weight of curvature on mesh size in Part 3 

 

 

 


